Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Genes (Basel) ; 15(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38540394

RESUMO

Magnolia kwangsiensis, a dioecious tree native to China, is recognized not only for its status as an at-risk species but also for its potential in therapeutic applications courtesy of its bioactive compounds. However, the genetic underpinnings of its leaf development and compound biosynthesis are not well documented. Our study aims to bridge this knowledge gap through comparative transcriptomics, analyzing gene expression through different leaf maturation stages. We studied the transcriptome of M. kwangsiensis leaves by applying RNA sequencing at juvenile, tender, and mature phases. We identified differentially expressed genes (DEGs) to explore transcriptional changes accompanying the developmental trajectory. Our analysis delineates the transcriptional landscape of over 20,000 genes with over 6000 DEGs highlighting significant transcriptional shifts throughout leaf maturation. Mature leaves demonstrated upregulation in pathways related to photosynthesis, cell wall formation, and polysaccharide production, affirming their structural integrity and specialized metabolic functions. Our GO and KEGG enrichment analyses underpin these findings. Furthermore, we unveiled coordinated gene activity correlating development with synthesizing therapeutically relevant polysaccharides. We identified four novel glycosyltransferases potentially pivotal in this synergistic mechanism. Our study uncovers the complementary evolutionary forces that concurrently sculpt structural and chemical defenses. These genetic mechanisms calibrate leaf tissue resilience and biochemical efficacy.


Assuntos
Magnolia , Magnolia/genética , Perfilação da Expressão Gênica , Transcriptoma/genética , Folhas de Planta/genética , Folhas de Planta/química , Análise de Sequência de RNA
2.
BMC Plant Biol ; 24(1): 200, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38500068

RESUMO

BACKGROUND: Michelia lacei W.W.Smith (Magnoliaceae), was classified as a Plant Species with Extremely Small Populations (PSESP) by the Yunnan Provincial Government in both action plans of 2012 and 2021. This evergreen tree is known for its high ornamental and scientific value, but it faces significant threats due to its extremely small population size and narrow geographical distribution. The study aims to understand the genetic structure, diversity, and demographic history of this species to inform its conservation strategies. RESULTS: The analysis of transcriptome data from 64 individuals across seven populations of M. lacei identified three distinct genetic clusters and generated 104,616 single-nucleotide polymorphisms (SNPs). The KM ex-situ population, originating from Longling County, exhibited unique genetic features, suggesting limited gene flow. The genetic diversity was substantial, with significant differences between populations, particularly between the KM lineage and the OTHER lineage. Demographic history inferred from the data indicated population experienced three significant population declines during glaciations, followed by periods of recovery. We estimated the effective population size (Ne) of the KM and OTHER lineages 1,000 years ago were 85,851 and 416,622, respectively. Gene flow analysis suggested past gene flow between populations, but the KM ex-situ population showed no recent gene flow. A total of 805 outlier SNPs, associated with four environmental factors, suggest potential local adaptation and showcase the species' adaptive potential. Particularly, the BZ displayed 515 adaptive loci, highlighting its strong potential for adaptation within this group. CONCLUSIONS: The comprehensive genomic analysis of M. lacei provides valuable insights into its genetic background and highlights the urgent need for conservation efforts. The study underscores the importance of ex-situ conservation methods, such as seed collection and vegetative propagation, to safeguard genetic diversity and promote population restoration. The preservation of populations like MC and BZ is crucial for maintaining the species' genetic diversity. In-situ conservation measures, including the establishment of in-situ conservation sites and community engagement, are essential to enhance protection awareness and ensure the long-term survival of this threatened plant species.


Assuntos
Magnolia , Magnoliaceae , Humanos , Animais , Variação Genética , Transcriptoma , China , Espécies em Perigo de Extinção , Magnolia/genética , Magnoliaceae/genética
3.
Molecules ; 29(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338333

RESUMO

Bacterial infections pose a significant risk to human health. Magnolol, derived from Magnolia officinalis, exhibits potent antibacterial properties. Synthetic biology offers a promising approach to manufacture such natural compounds. However, the plant-based biosynthesis of magnolol remains obscure, and the lack of identification of critical genes hampers its synthetic production. In this study, we have proposed a one-step conversion of magnolol from chavicol using laccase. After leveraging 20 transcriptomes from diverse parts of M. officinalis, transcripts were assembled, enriching genome annotation. Upon integrating this dataset with current genomic information, we could identify 30 laccase enzymes. From two potential gene clusters associated with magnolol production, highly expressed genes were subjected to functional analysis. In vitro experiments confirmed MoLAC14 as a pivotal enzyme in magnolol synthesis. Improvements in the thermal stability of MoLAC14 were achieved through selective mutations, where E345P, G377P, H347F, E346C, and E346F notably enhanced stability. By conducting alanine scanning, the essential residues in MoLAC14 were identified, and the L532A mutation further boosted magnolol production to an unprecedented level of 148.83 mg/L. Our findings not only elucidated the key enzymes for chavicol to magnolol conversion, but also laid the groundwork for synthetic biology-driven magnolol production, thereby providing valuable insights into M. officinalis biology and comparative plant science.


Assuntos
Compostos Alílicos , Lignanas , Magnolia , Fenóis , Humanos , Magnolia/genética , Magnolia/química , Lacase , Lignanas/química , Compostos de Bifenilo/química
4.
Gigascience ; 132024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38206588

RESUMO

Magnolia sinica (Magnoliaceae) is a highly threatened tree endemic to southeast Yunnan, China. In this study, we generated for the first time a high-quality chromosome-scale genome sequence from M. sinica, by combining Illumina and ONT data with Hi-C scaffolding methods. The final assembled genome size of M. sinica was 1.84 Gb, with a contig N50 of ca. 45 Mb and scaffold N50 of 92 Mb. Identified repeats constituted approximately 57% of the genome, and 43,473 protein-coding genes were predicted. Phylogenetic analysis shows that the magnolias form a sister clade with the eudicots and the order Ceratophyllales, while the monocots are sister to the other core angiosperms. In our study, a total of 21 individuals from the 5 remnant populations of M. sinica, as well as 22 specimens belonging to 8 related Magnoliaceae species, were resequenced. The results showed that M. sinica had higher genetic diversity (θw = 0.01126 and θπ = 0.01158) than other related species in the Magnoliaceae. However, population structure analysis suggested that the genetic differentiation among the 5 M. sinica populations was very low. Analyses of the demographic history of the species using different models consistently revealed that 2 bottleneck events occurred. The contemporary effective population size of M. sinica was estimated to be 10.9. The different patterns of genetic loads (inbreeding and numbers of deleterious mutations) suggested constructive strategies for the conservation of these 5 different populations of M. sinica. Overall, this high-quality genome will be a valuable genomic resource for conservation of M. sinica.


Assuntos
Macaca , Magnolia , Magnoliaceae , Humanos , Magnolia/genética , Filogenia , China
5.
Genes (Basel) ; 14(6)2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37372442

RESUMO

The genus Houpoea belongs to the family Magnoliaceae, and the species in this genus have important medicinal values. However, the investigation of the correlation between the evolution of the genus and its phylogeny has been severely hampered by the unknown range of species within the genus and the paucity of research on its chloroplast genome. Thus, we selected three species of Houpoea: Houpoea officinalis var officinalis (OO), Houpoea officinalis var. biloba (OB), and Houpoea rostrata (R). With lengths of 160,153 bp (OO), 160,011 bp (OB), and 160,070 bp (R), respectively, the whole chloroplast genomes (CPGs) of these three Houpoea plants were acquired via Illumina sequencing technology, and the findings were annotated and evaluated. These three chloroplast genomes were revealed by the annotation findings to be typical tetrads. A total of 131, 132, and 120 different genes were annotated. The CPGs of the three species had 52, 47, and 56 repeat sequences, which were primarily found in the ycf2 gene. A useful tool for identifying species is the approximately 170 simple sequence repeats (SSRs) that have been found. The border area of the reverse repetition region (IR) was studied, and it was shown that across the three Houpoea plants, it is highly conservative, with only changes between H. rostrata and the other two plants observed. Numerous highly variable areas (rps3-rps19, rpl32-trnL, ycf1, ccsA, etc.) have the potential to serve as the barcode label for Houpoea, according to an examination of mVISTA and nucleotide diversity (Pi). Phylogenetic relation indicates that Houpoea is a monophyletic taxon, and its genus range and systematic position are consistent with the Magnoliaceae system of Sima Yongkang-Lu Shugang, including five species and varieties of H. officinalis var. officinalis, H. rostrata, H. officinalis var. biloba, Houpoea obovate, and Houpoea tripetala, which evolved and differentiated from the ancestors of Houpoea to the present Houpoea in the above order. This study provides valuable information on the genus Houpoea, enriches the CPG information on Houpoea genus, and provides genetic resources for the further classification of and phylogenetic research on Houpoea.


Assuntos
Genoma de Cloroplastos , Magnolia , Filogenia , Genoma de Cloroplastos/genética , Magnolia/genética , Sequências Repetitivas de Ácido Nucleico
6.
Gene ; 853: 147066, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36455787

RESUMO

Magnolia sieboldii K. Koch is a deciduous tree species. However, the wild resource of M. sieboldii has been declining due to excessive utilization and seed dormancy. In our previous research, M. sieboldii seeds have morphophysiological dormancy and low germination rates under natural conditions. The aim of the present study was to identify the genes involved in dormancy maintenance. In this study, the germination percentage of M. sieboldii seeds negatively correlated with the content of endogenous abscisic acid (ABA). The hydration of seeds for germination showed three distinct phases. Five key time points were identified: 0 h imbibition (dry seed, GZ), 0 day after imbibition (DAI), 16 DAI, 40 DAI, and 56 DAI. The comprehensive transcript profiles of M. sieboldii seeds treated with ABA and water at the five key germinating stages were obtained. A total of 9641 differentially expressed genes (DEGs) were identified, and 208 and 197 common DEGs were found throughout the ABA and water treatments, respectively. Compared with that in the GZ, 518, 696, 2133, and 1535 DEGs were identified in the SH group at 0, 16, 40 and 56 DAI, respectively. 666, 1725, 1560 and 1415 DEGs were identified in the ABA group at 0, 16, 40, and 56 DAI, respectively. Among the identified DEGs, 12 722 were annotated with GO terms, the top three enriched GO terms were different among the DEGs at 56 DAI in the ABA vs. SH treatments. KEGG pathway enrichment analysis for DEGs indicated that oxidative phosphorylation, protein processing in endoplasmic reticulum, starch and sucrose metabolism play an important role in seed response to ABA. 1926 TFs are obtained and classified into 72 families from the M. sieboldii transcriptome. Results of differential gene expression analysis together with qRT-PCR indicated that phase II is crucial for rapid and successful seed germination. This study is the first to present the global expression patterns of ABA-regulated transcripts in M. sieboldii seeds at different germinating phases.


Assuntos
Ácido Abscísico , Magnolia , Humanos , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Germinação/genética , Transcriptoma , Magnolia/genética , Perfilação da Expressão Gênica , Dormência de Plantas/genética , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Sci Rep ; 12(1): 22536, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36581613

RESUMO

Magnolia sinostellata is one of the endangered species in China and largely suffers light deficiency stress in the understory of forest. However, the weak light response molecular mechanism remains unclear. More importantly, hub genes in the molecular network have not been pinpointed. To explore potential regulators in the mechanism, weighted gene co-expression network analysis (WGCNA) was performed to analysis the trancriptome data of M. sinostellata leaves subjected to weak light with different time points. Gene co-expression analysis illustrated that module 1, 2 and 3 were closely associated with light deficiency treatment, which. Gene ontology and KEGG analyses showed that genes in module 1 mainly participated in amino and nucleotide metabolism, module 2 mostly involved in carbon fixation and module 3 mostly regulated photosynthesis related pathways, among which 6, 7 and 8 hub genes were identified, respectively. Hub genes isoform_107196 in module 1 and isoform_55976 in module 2 were unique to M. sinostellata. This study found that light deficiency inhibited photosynthesis and stress tolerance, while improved carbon metabolism and flowering related pathways in M. sinostellata, which can impact its accumulation reserves of growth and reproduction in the next season. In addition, key shade response regulators identified in this study have laid a firm foundation for further investigation of shade response molecular mechanism and protection of other shade sensitive plants.


Assuntos
Magnolia , Animais , Magnolia/genética , Espécies em Perigo de Extinção , Perfilação da Expressão Gênica , Fotossíntese/genética , China , Redes Reguladoras de Genes
8.
Planta ; 257(1): 4, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36434125

RESUMO

MAIN CONCLUSION: In Magnolia polytepala, the formation of floral organization and color was attributed to tissue-dependent differential expression levels of MADS-box genes and anthocyanin biosynthetic genes. In angiosperms, the diversity of floral morphology and organization suggests its value in exploring plant evolution. Magnolia polytepala, an endemic basal angiosperm species in China, possesses three green sepal-like tepals in the outermost whorl and pink petal-like tepals in the inner three whorls, forming unique floral morphology and organization. However, we know little about its underlying molecular regulatory mechanism. Here, we first reported the full-length transcriptome of M. polytepala using PacBio sequencing. A total of 16 MADS-box transcripts were obtained from the transcriptome data, including floral homeotic genes (e.g., MpAPETALA3) and other non-floral homeotic genes (MpAGL6, etc.). Phylogenetic analysis and spatial expression pattern reflected their putative biological function as their homologues in Arabidopsis. In addition, nine structural genes involved in anthocyanin biosynthesis pathway had been screened out, and tepal color difference was significantly associated with their tissue-dependent differential expression levels. This study provides a relatively comprehensive investigation of the MADS-box family and anthocyanin biosynthetic genes in M. polytepala, and will facilitate our understanding of the regulatory mechanism underlying floral organization and color in basal angiosperms.


Assuntos
Arabidopsis , Magnolia , Magnoliaceae , Magnoliopsida , Magnoliopsida/genética , Magnoliopsida/metabolismo , Magnolia/genética , Magnolia/metabolismo , Proteínas de Domínio MADS/metabolismo , Magnoliaceae/metabolismo , Filogenia , Regulação da Expressão Gênica de Plantas , Antocianinas/genética , Evolução Molecular , Arabidopsis/genética
9.
BMC Genomics ; 23(1): 716, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36261795

RESUMO

BACKGROUND: The subgenus Gynopodium belonging to genus Magnolia have high ornamental, economic, and ecological value. Subgenus Gynopodium contains eight species, but six of these species are threatened. No studies to date have characterized the characteristics of the chloroplast genomes (CPGs) within subgenus Gynopodium species. In this study, we compared the structure of CPGs, identified the mutational hotspots and resolved the phylogenetic relationship of subgenus Gynopodium. RESULTS: The CPGs of six subgenus Gynopodium species ranged in size from 160,027 bp to 160,114 bp. A total of 131 genes were identified, including 86 protein-coding genes, eight ribosomal RNA genes, and 37 transfer RNA genes. We detected neither major expansions or contractions in the inverted repeat region, nor rearrangements or insertions in the CPGs of six subgenus Gynopodium species. A total of 300 large repeat sequences (forward, reverse, and palindrome repeats), 847 simple sequence repeats, and five highly variable regions were identified. One gene (ycf1) and four intergenic regions (psbA-trnH-GUG, petA-psbJ, rpl32-trnL-UAG, and ccsA-ndhD) were identified as mutational hotspots by their high nucleotide diversity (Pi) values (≥ 0.004), which were useful for species discrimination. Maximum likelihood and Bayesian inference trees were concordant and indicated that Magnoliaceae consisted of two genera Liriodendron and Magnolia. Six species of subgenus Gynopodium clustered as a monophyletic clade, forming a sister clade with subgenus Yulania (BS = 100%, PP = 1.00). Due to the non-monophyly of subgenus Magnolia, subgenus Gynopodium should be treated as a section of Magnolia. Within section Gynopodium, M. sinica diverged first (posterior probability = 1, bootstrap = 100), followed by M. nitida, M. kachirachirai and M. lotungensis. M. omeiensis was sister to M. yunnanensis (posterior probability = 0.97, bootstrap = 50). CONCLUSION: The CPGs and characteristics information provided by our study could be useful in species identification, conservation genetics and resolving phylogenetic relationships of Magnoliaceae species.


Assuntos
Genoma de Cloroplastos , Magnolia , Magnoliaceae , Genoma de Cloroplastos/genética , Magnolia/genética , Filogenia , Teorema de Bayes , Magnoliaceae/genética , Repetições de Microssatélites , RNA de Transferência , DNA Intergênico , Nucleotídeos
10.
BMC Plant Biol ; 21(1): 460, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625030

RESUMO

BACKGROUND: Magonlia denudata is an important perennial tree species of the Magnoliaceae family, known for its ornamental value, resistance to smoke pollution and wind, role in air purification, and robust cold tolerance. In this study, a high-throughput transcriptome analysis of leaf buds was performed, and gene expression following artificial acclimation 22 °C, 4 °C and 0 °C, was compared by RNA sequencing. RESULTS: Over 426 million clean reads were produced from three libraries (22 °C, 4 °C and 0 °C). A total of 74,503 non-redundant unigenes were generated, with an average length of 1173.7 bp (N50 = 1548). Based on transcriptional results, 357 and 235 unigenes were identified as being upregulated and downregulated under cold stress conditions, respectively. Differentially expressed genes were annotated using Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes pathway analyses. The transcriptomic analysis focused on carbon metabolism and plant hormone signal transduction associated with cold acclimation. Transcription factors such as those in the basic helix-loop-helix and AP2/ERF families were found to play an important role in M. denudata cold acclimation. CONCLUSION: M. denudata exhibits responses to non-freezing cold temperature (4 °C) to increase its cold tolerance. Cold resistance was further strengthened with cold acclimation under freezing conditions (0 °C). Cold tolerance genes, and cold signaling transcriptional pathways, and potential functional key components for the regulation of the cold response were identified in M. denudata. These results provide a basis for further studies, and the verification of key genes involved in cold acclimation responses in M. denudata lays a foundation for developing breeding programs for Magnoliaceae species.


Assuntos
Aclimatação/genética , Temperatura Baixa/efeitos adversos , Resposta ao Choque Frio/genética , Magnolia/genética , Magnolia/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , Aclimatação/fisiologia , Resposta ao Choque Frio/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Variação Genética , Genótipo , Transdução de Sinais , Fatores de Transcrição
11.
Bioengineered ; 12(1): 3358-3366, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34224313

RESUMO

Magnolia sieboldii K. Koch is endemic to China and has high medicinal and ornamental values. However, its seed exhibits morphophysiological dormancy, and the molecular mechanisms of which are not clearly understood. To reveal the regulation mechanism of the ABA signal in seed dormancy, the M. sieboldii ABA receptor Pyrabactin Resistance 1 (PYR1) gene was cloned and analyzed. Analysis of the MsPYR1 sequence analysis showed that the full-length cDNA contained a complete open reading frame of 987 bp and encoded a predicted protein of 204 amino acid residues. The protein had a relative molecular weight of 22.661 kDa and theoretical isoelectric point of 5.01. The transcript levels of MsPYR1 were immediately upregulated at 16 DAI and then decreased at 40 DAI. The highest transcript level of MsPYR1 was found in the dry seeds, indicating that the MsPYR1 gene may play an important role in the regulation of dormancy. The MsPYR1 gene cDNA was successfully expressed in E. coli Rosetta (DE3), and the protein bands were consistent with the prediction. The Anti-MsPYR1antibody could detect the expression of MsPYR1 in M. sieboldii. The results provided a foundation for further study of the function of the MsPYR1 gene.ABBREVIATIONSABA: Abscisic acid; MPD: morphophysiological; PYR1: Pyrabactin Resistance1; PYL: Pyr1-Like; RCAR: Regulatory Components of Aba Receptors; PP2C: protein phosphatases 2C; SnRK2: sucrose non-fermenting1-related protein kinase2; DAI: day after imbibition; NCBI: National Center for Biotechnology Information; BCA: Bicinchoninic acid; CDD: Conserved Domains.


Assuntos
Magnolia , Proteínas de Membrana Transportadoras , Proteínas de Plantas , Clonagem Molecular , Magnolia/genética , Magnolia/fisiologia , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Dormência de Plantas/genética , Dormência de Plantas/fisiologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sementes/química , Sementes/metabolismo , Transdução de Sinais/genética
12.
Sci Rep ; 11(1): 10842, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035372

RESUMO

Magnolia sieboldii K. Koch (M. sieboldii) is a deciduous Chinese tree species of the Magnoliaceae family with high ornamental, medicinal, and economic benefits. The germination of M. sieboldii seeds under natural conditions is extremely difficult, thereby hindering the cultivation and breeding of this important species. The molecular mechanisms underlying M. sieboldii seed germination remain unclear due to the lack of genomic and transcriptomic resources. Here, we integrated both mRNA and miRNA sequencing to identify the genes and pathways related to M. sieboldii germination. A comprehensive full-length transcriptome containing 158,083 high-quality unigenes was obtained by single-molecule real-time (SMRT) sequencing technology. We identified a total of 13,877 genes that were differentially expressed between non-germinated and germinated seeds. These genes were mainly involved in plant hormone signal transduction and diverse metabolic pathways such as those involving lipids, sugars, and amino acids. Our results also identified a complex regulatory network between miRNAs and their target genes. Taken together, we present the first transcriptome of M. sieboldii and provide key genes and pathways associated with seed germination for further characterization. Future studies of the molecular basis of seed germination will facilitate the genetic improvement M. sieboldii.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Magnolia/crescimento & desenvolvimento , MicroRNAs/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Germinação , Magnolia/genética , Anotação de Sequência Molecular , Proteínas de Plantas/genética , Análise de Sequência de RNA , Imagem Individual de Molécula
13.
Mol Genet Genomics ; 296(1): 207-222, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33146745

RESUMO

The floral transition is a critical developmental switch in plants, and has profound effects on the flower production and yield. Magnolia × soulangeana 'Changchun' is known as a woody ornamental plant, which can bloom in spring and summer, respectively. In this study, anatomical observation, physiological measurement, transcriptome, and small RNA sequencing were performed to investigate potential endogenous regulatory mechanisms underlying floral transition in 'Changchun'. Transition of the shoot apical meristem from vegetative to reproductive growth occurred between late April and early May. During this specific developmental process, a total of 161,645 unigenes were identified, of which 73,257 were significantly differentially expressed, while a number of these two categories of miRNAs were 299 and 148, respectively. Further analysis of differentially expressed genes (DEGs) revealed that gibberellin signaling could regulate floral transition in 'Changchun' in a DELLA-dependent manner. In addition, prediction and analysis of miRNA targeted genes suggested that another potential molecular regulatory module was mediated by the miR172 family and other several novel miRNAs (Ms-novel_miR139, Ms-novel_miR229, and Ms-novel_miR232), with the participation of up- or down-regulating genes, including MsSVP, MsAP2, MsTOE3, MsAP1, MsGATA6, MsE2FA, and MsMDS6. Through the integrated analysis of mRNA and miRNA, our research results will facilitate the understanding of the potential molecular mechanism underlying floral transition in 'Changchun', and also provide basic experimental data for the plant germplasm resources innovation in Magnolia.


Assuntos
Flores/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Giberelinas/metabolismo , Magnolia/genética , Reguladores de Crescimento de Plantas/metabolismo , RNA de Plantas/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Magnolia/crescimento & desenvolvimento , Magnolia/metabolismo , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , MicroRNAs/classificação , MicroRNAs/genética , MicroRNAs/metabolismo , Anotação de Sequência Molecular , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , RNA de Plantas/classificação , RNA de Plantas/metabolismo , Transdução de Sinais , Transcriptoma
14.
Tree Physiol ; 40(9): 1247-1259, 2020 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-32348527

RESUMO

The APETALA1/SQUAMOSA (AP1/SQUA)-like genes of flowering plants play crucial roles in the development processes of floral meristems, sepals, petals and fruits. Although many of the AP1/SQUA-like genes have been characterized in angiosperms, few have been identified in basal angiosperm taxa. Therefore, the functional evolution of the AP1/SQUA subfamily is still unclear. We characterized an AP1 homolog, MawuAP1, from Magnolia wufengensis that is an ornamental woody plant belonging to the basal angiosperms. Gene sequence and phylogenetic analyses suggested that MawuAP1 was clustered with the FUL-like homologous genes of basal angiosperms and had FUL motif and paleoAP1 motif domain, but it did not have the euAP1 motif domain of core eudicots. Expression pattern analysis showed that MawuAP1 was highly expressed in vegetative and floral organs, particularly in the early stage of flower bud development and pre-anthesis. Protein-protein interaction pattern analysis revealed that MawuAP1 has interaction with an A-class gene (MawuAP1), C-class gene (MawuAG-1) and E-class gene (MawuAGL9) of the MADS-box family genes. Ectopic expression in Arabidopsis thaliana indicated that MawuAP1 could significantly promote flowering and fruit development, but it could not restore the sepal and petal formation of ap1 mutants. These results demonstrated that there are functional differences in the specification of sepal and petal floral organs and development of fruits among the AP1/SQUA-like genes, and functional conservation in the regulation of floral meristem. These findings provide strong evidence for the important functions of MawuAP1 in floral meristem determination, promoting flowering and fruit development, and further highlight the importance of AP1/SQUA subfamily in biological evolution and diversity.


Assuntos
Magnolia/genética , Magnoliaceae , Magnoliopsida , Flores/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Filogenia , Proteínas de Plantas/genética
15.
PLoS One ; 15(4): e0231020, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32294100

RESUMO

The mitochondrial genomes of flowering plants are well known for their large size, variable coding-gene set and fluid genome structure. The available mitochondrial genomes of the early angiosperms show extreme genetic diversity in genome size, structure, and sequences, such as rampant HGTs in Amborella mt genome, numerous repeated sequences in Nymphaea mt genome, and conserved gene evolution in Liriodendron mt genome. However, currently available early angiosperm mt genomes are still limited, hampering us from obtaining an overall picture of the mitogenomic evolution in angiosperms. Here we sequenced and assembled the draft mitochondrial genome of Magnolia biondii Pamp. from Magnoliaceae (magnoliids) using Oxford Nanopore sequencing technology. We recovered a single linear mitochondrial contig of 967,100 bp with an average read coverage of 122 × and a GC content of 46.6%. This draft mitochondrial genome contains a rich 64-gene set, similar to those of Liriodendron and Nymphaea, including 41 protein-coding genes, 20 tRNAs, and 3 rRNAs. Twenty cis-spliced and five trans-spliced introns break ten protein-coding genes in the Magnolia mt genome. Repeated sequences account for 27% of the draft genome, with 17 out of the 1,145 repeats showing recombination evidence. Although partially assembled, the approximately 1-Mb mt genome of Magnolia is still among the largest in angiosperms, which is possibly due to the expansion of repeated sequences, retention of ancestral mtDNAs, and the incorporation of nuclear genome sequences. Mitochondrial phylogenomic analysis of the concatenated datasets of 38 conserved protein-coding genes from 91 representatives of angiosperm species supports the sister relationship of magnoliids with monocots and eudicots, which is congruent with plastid evidence.


Assuntos
Genoma Mitocondrial/genética , Genoma de Planta/genética , Magnolia/genética , Magnoliopsida/genética , Mitocôndrias/genética , Sequência Conservada/genética , Genes de Plantas/genética , Liriodendron/genética , Anotação de Sequência Molecular , Nymphaea/genética , Filogenia
16.
Gene ; 736: 144410, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32007581

RESUMO

Magnoliaceae is a primitive taxon in the angiosperms, comprising approximately 240 species in 2-17 genera. Many of them have been widely cultivated due to their horticultural and medicinal value. However, there are uncertainties and controversies about the delimitation of the genera except Liriodendron L. in this family. The Yulania taxa is also the focus of dispute at the genus and section levels. In this study, we compared ten Yulania plastomes, including the newly sequenced M. polytepala. The plastome-wide comparative analysis demonstrated that 1) Yulania cp genomes were highly conserved, and the majority differences existed in IR regions with the loss/retention of trnV-GAC or ycf15 gene, 2) mutational hotspots with high levels of nucleotide diversity (Pi > 0.02) existed in both coding (rpoA, and ycf1) and no-coding (ccsA-ndhD, ndhE-ndhG, ndhF-rpl32, petA-psbJ, rpl32-trnL, rps3-rps19, and trnH-psbA) regions among the genus Yulania. Combined with other data from Magnoliaceae plastomes, our reconstructed molecular phylogenetic tree revealed that Yulania is monophyletic, separated from the genus Magnolia L. (=Magnolia subg. Magnolia L.), but seems a sister of Michelia L. Moreover, M. polytepala which belongs to the genus Yulania is most closely related to M. liliiflora. All these results indicated that plastome data may contribute to investigating taxonomy, population genetics and phylogeny of Yulania.


Assuntos
Cloroplastos/genética , Genoma de Cloroplastos/genética , Genoma de Planta/genética , Magnolia/genética , Magnoliaceae/genética , Genética Populacional/métodos , Genômica/métodos , Magnoliopsida/genética , Filogenia
17.
Tree Physiol ; 40(1): 90-107, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31553477

RESUMO

AGAMOUS/SEEDSTICK (AG/STK) subfamily genes play crucial roles in the reproductive development of plants. However, most of our current knowledge of AG/STK subfamily genes is restricted to core eudicots and grasses, and the knowledge of ancestral exon-intron structures, expression patterns, protein-protein interaction patterns and functions of AG/STK subfamily genes remains unclear. To determine these, we isolated AG/STK subfamily genes (MawuAG1, MawuAG2 and MawuSTK) from a woody basal angiosperm Magnolia wufengensis (Magnoliaceae). MawuSTK arose from the gene duplication event occurring before the diversification of extant angiosperms, and MawuAG1 and MawuAG2 may result from a gene duplication event occurring before the divergence of Magnoliaceae and Lauraceae. Gene duplication led to apparent diversification in their expression and interaction patterns. It revealed that expression in both stamens and carpels likely represents the ancestral expression profiles of AG lineage genes, and expression of STK-like genes in stamens may have been lost soon after the appearance of the STK lineage. Moreover, AG/STK subfamily proteins may have immediately established interactions with the SEPALLATA (SEP) subfamily proteins following the emergence of the SEP subfamily; however, their interactions with the APETALA1/FRUITFULL subfamily proteins or themselves differ from those found in monocots and basal and core eudicots. MawuAG1 plays highly conserved roles in the determinacy of stamen, carpel and ovule identity, while gene duplication contributed to the functional diversification of MawuAG2 and MawuSTK. In addition, we investigated the evolutionary history of exon-intron structural changes of the AG/STK subfamily, and a novel splice-acceptor mode (GUU-AU) and the convergent evolution of N-terminal extension in the euAG and PLE subclades were revealed for the first time. These results further advance our understanding of ancestral AG/STK subfamily genes in terms of phylogeny, exon-intron structures, expression and interaction patterns, and functions, and provide strong evidence for the significance of gene duplication in the expansion and evolution of the AG/STK subfamily.


Assuntos
Magnolia/genética , Magnoliopsida , Sequência de Aminoácidos , Evolução Molecular , Flores , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Filogenia , Proteínas de Plantas/genética
18.
Genes (Basel) ; 11(1)2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31877931

RESUMO

Magnolia × soulangeana 'Changchun' are trees that bloom in spring and summer respectively after flower bud differentiation. Here, we use phenological and morphological observation and RNA-seq technology to study the molecular basis of flowering initiation in 'Changchun'. During the process of flowering initiation in spring and summer, the growth of expanded flower buds increased significantly, and their shape was obviously enlarged, which indicated that flowering was initiated. A total of 168,120 expressed genes were identified in spring and summer dormant and expanded flower buds, of which 11,687 genes showed significantly differential expression between spring and summer dormant and expanded flower buds. These differentially expressed genes (DEGs) were mainly involved in plant hormone signal transduction, metabolic processes, cellular components, binding, and catalytic activity. Analysis of differential gene expression patterns revealed that gibberellin signaling, and some transcription factors were closely involved in the regulation of spring and summer flowering initiation in 'Changchun'. A qRT-PCR (quantitative Real Time Polymerase Chain Reaction) analysis showed that BGISEQ-500 sequencing platform could truly reflect gene expression patterns. It also verified that GID1B (GIBBERELLIN INSENSITIVE DWARF1 B), GID1C, SPL8 (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 8), and GASA (GIBBERELLIC ACID-STIMULATED ARABIDOPSIS) family genes were expressed at high levels, while the expression of SPY (SPINDLY) was low during spring and summer flowering initiation. Meanwhile, the up- and down-regulated expression of, respectively, AGL6 (AGAMOUS-LIKE 6) and DREB3 (DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN 3), AG15, and CDF1 (CYCLIC DOF FACTOR 1) might also be involved in the specific regulation of spring and summer flowering initiation. Obviously, flowering initiation is an important stage of the flowering process in woody plants, involving the specific regulation of relevant genes and transcription factors. This study provides a new perspective for the regulation of the flowering process in perennial woody plants.


Assuntos
Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Magnolia/genética , Quimera/genética , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/genética , Giberelinas/metabolismo , Magnolia/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/genética , Proteínas de Plantas/genética , Análise de Sequência de RNA/métodos , Transcriptoma/genética
19.
J Plant Res ; 132(6): 741-758, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31489497

RESUMO

Species delimitations by morphological and by genetic markers are not always congruent. Magnolia kobus consists of two morphologically different varieties, kobus and borealis. The latter variety is characterized by larger leaves than the former. For the conservation of M. kobus genetic resources in natural forests, the relationships between morphological and genetic variation should be clarified. We investigated variations in nuclear microsatellites, chloroplast DNA (cpDNA) sequences and leaf morphological traits in 23 populations of M. kobus over the range of species. Two genetically divergent lineages, northern and southern were detected and their geographical boundary was estimated to be at 39°N. The northern lineage consisted of two genetic clusters and a single cpDNA haplotype, while the southern one had multiple genetic clusters and cpDNA haplotypes. The northern lineage showed significantly lower genetic diversity than the southern. Approximate Bayesian computation indicated that the northern and southern lineages had experienced, respectively, population expansion and long-term stable population size. The divergence time between the two lineages was estimated to be 565,000 years ago and no signature of migration between the two lineages after divergence was detected. Ecological niche modeling showed that the potential distribution area in northern Japan at the last glacial maximum was very small. It is thus considered that the two lineages have experienced different population histories over several glacial-inter-glacial cycles. Individuals of populations in the central to northern part of Honshu on the Sea of Japan side and in Hokkaido had large leaf width and area. These leaf characteristics corresponded with those of variety borealis. However, the delimitation of the northern and southern lineages detected by genetic markers (39°N) was not congruent with that detected by leaf morphologies (36°N). It is therefore suggested that variety borealis is not supported genetically and the northern and southern lineages should be considered separately when identifying conservation units based not on morphology but on genetic markers.


Assuntos
Variação Genética , Magnolia/genética , Evolução Biológica , DNA de Cloroplastos/análise , Ecossistema , Magnolia/anatomia & histologia , Magnolia/classificação , Repetições de Microssatélites , Filogenia , Filogeografia , Dispersão Vegetal , Folhas de Planta/anatomia & histologia
20.
Sci Rep ; 9(1): 9634, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31270420

RESUMO

Magnolia sirindhorniae Noot. & Chalermglin is an endangered species with high ornamental and commercial value that needs to be urgently protected and judiciously commercialized. In this study, a protocol for efficient regeneration of this species is standardized. The lateral buds of the M. sirindhorniae plant were used as an explant. Half-strength Murashige and Skoog (MS) medium supplemented with 2.0 mg/L 6-benzyladenine (BA), 0.1 mg/L α-naphthaleneacetic acid (NAA), and 2.0 mg/L gibberellic acid (GA3) was found to be the optimal medium for shoot induction. The maximum shoot multiplication rate (310%) was obtained on Douglas-fir cotyledon revised medium (DCR) fortified with 0.2 mg/L BA, 0.01 mg/L NAA, and additives. The half-strength DCR medium supplemented with 0.5 mg/L NAA and 0.5 mg/L indole-3-butyric acid (IBA) supported the maximum rate (85.0%) of in vitro root induction. After a simple acclimatization process, the survival rate of plantlets in a substrate mixture of sterile perlite and peat soil (1:3; v/v) was 90.2%. DNA markers were used for assessment of genetic uniformity, confirming the genetic uniformity and stability of regenerated plants of M. sirindhorniae. Thus, the described protocol can safely be applied for large scale propagation of this imperative plant.


Assuntos
DNA de Plantas/genética , Espécies em Perigo de Extinção/estatística & dados numéricos , Marcadores Genéticos , Magnolia/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/farmacologia , Regeneração , Aclimatação , DNA de Plantas/análise , Magnolia/efeitos dos fármacos , Magnolia/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...